Inter-annual variability in surface currents over the California shelf measured by High-Frequency Radar

Douglas George and John Largier

Acknowledgements: Marcel Losekoot, UCD, Eric Terrill, Scripps/UCSD, Burt Jones, USC (now at KAUST), Libe Washburn, UCSB, Jeff Paduan, NPS, Toby Garfield, SFSU (now at SWFSC/NMFS/NOAA), Mike Kosro, OSU, Chad Whelan, CODAR, et al!

Talking Currents and RADAR

 Radio Detection and Ranging
Use radiowaves to determine the movement of surface waters by bouncing off waves

US West Coast HFR Network

- Three regional ocean observing networks (NANOOS, CeNCOOS and SCCOOS)
- 72 coastal stations, including 5 inside San Francisco Bay

Northwest Association of Networked Ocean Observing Systems (NANOOS)

Central and Northern California Ocean Observing System (CeNCOOS)

> Southern California Coastal Ocea Observing System (SCC005)

US West Coast HFR Network

- Three regional ocean observing networks (NANOOS, CeNCOOS and SCCOOS)
- 72 coastal stations, including 5 inside San Francisco Bay
- Largest geographic coverage in last 10 years

Northwest

US West Coast Regional Climate and Events

Climate

- Upwelling Season (March-August)
- Relaxation Season (Sept-Jan)

Events

- > 2009-10 El Niño
- 2011 La Niña
- 2014-2015 Warm Blob (Marine Heatwave)
- 2015-16 El Niño

Parsing a Decade of High Resolution Data

- 1. Seasonal variability
 - Search for latitudinal upwelling signals
- 2. Inter-annual variability
 - Search for changes associated with ocean climate events
- 3. Cross-shelf variability
 - Search for structure and dependence on shoreline for current steering

Flow-Shoreline Orientation Analysis

Relationship of flow to shoreline orientation

- Simple coast broken into ~10 km segments and orientation extracted
- Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
- Current data rotated to be alongshore and cross-shore

Flow-Shoreline Orientation Analysis

Relationship of flow to shoreline orientation

- Simple coast broken into ~10 km segments and orientation extracted
- Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
- Current data rotated to be alongshore and cross-shore

Flow-Shoreline Orientation Analysis

Relationship of flow to shoreline orientation

- Simple coast broken into ~10 km segments and orientation extracted
- Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
- Current data rotated to be alongshore and cross-shore

Seasonal Current Trends (2008-2018)

Annual Current Trends (2008-2018)

Cross-shelf Transects (Alongshore Currents)

Cross-shelf Transects: Alongshore Currents

Cross-shelf Transects (Cross-shore Currents)

Cross-shelf Transects: Cross-shore Currents

Parsing a Decade of High Resolution Data

1. Seasonal variability

Upwelling and relaxation signals very strong from Oregon to San Francisco Bay zone

2. Inter-annual variability

- Ocean climate events suppressed the normal southerly flows in 2015-2016
- 3. Cross-shelf variability
 - Eddies and jets identifiable using the 20- and 50-km offshore regions

What's Next

Correlation Analysis

Forcings Analysis (shoreline steering, meteorology)

Anomalies Analysis

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
2008										
2009	0.18									
2010	0.27	0.16								
2011	0.27	0.25	0.16							
2012	0.13	0.08	0.22	0.19						
2013	0.19	0.14	0.10	0.18	0.09					
2014	0.12	0.13	0.22	0.11	0.22	0.15				
2015	0.17	0.15	0.19	0.16	0.20	0.17	0.22			
2016	0.18	0.22	0.20	0.19	0.14	0.10	0.17	0.13		
2017	0.21	0.19	0.28	0.21	0.23	0.09	0.15	0.15	0.30	

Inter-annual correlation of alongshore currents

What's Next

Correlation Analysis

Forcings Analysis (shoreline steering, meteorology)

Anomalies Analysis

What's Next

Correlation Analysis

- Forcings Analysis (shoreline steering, meteorology)
- Anomalies Analysis

Thank you!

dgeorge@ucdavis.edu