Inter-annual variability in surface currents over the California shelf measured by High-Frequency Radar

Douglas George and John Largier

Acknowledgements: Marcel Losekoot, UCD, Eric Terrill, Scripps/UCSD, Burt Jones, USC (now at KAUST), Libe Washburn, UCSB, Jeff Paduan, NPS, Toby Garfield, SFSU (now at SWFSC/NMFS/NOAA), Mike Kosro, OSU, Chad Whelan, CODAR, et al!
Talking Currents and RADAR

- Radio Detection and Ranging
- Use radiowaves to determine the movement of surface waters by bouncing off waves
Three regional ocean observing networks (NANOOS, CeNCOOS and SCCOOS)

72 coastal stations, including 5 inside San Francisco Bay
Three regional ocean observing networks (NANOOS, CeNCOOS and SCCOOS)

- 72 coastal stations, including 5 inside San Francisco Bay
- Largest geographic coverage in last 10 years
US West Coast Regional Climate and Events

- **Climate**
 - Upwelling Season (March-August)
 - Relaxation Season (Sept-Jan)

- **Events**
 - 2009-10 El Niño
 - 2011 La Niña
 - 2014-2015 Warm Blob (Marine Heatwave)
 - 2015-16 El Niño
A Decade of Data (2008-2018)

Seasonal mean flow Headland jets Offshore flow Seasonal eddies

Seasonal averages for 2006-2015
A Decade of Data (2008-2018)

Seasonal mean flow Headland jets Offshore flow Seasonal eddies

Winter Spring Summer Fall
1. Seasonal variability
 - Search for latitudinal upwelling signals
2. Inter-annual variability
 - Search for changes associated with ocean climate events
3. Cross-shelf variability
 - Search for structure and dependence on shoreline for current steering
Flow-Shoreline Orientation Analysis

- Relationship of flow to shoreline orientation
 - Simple coast broken into ~10 km segments and orientation extracted
 - Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
 - Current data rotated to be alongshore and cross-shore
Flow-Shoreline Orientation Analysis

- Relationship of flow to shoreline orientation
 - Simple coast broken into ~10 km segments and orientation extracted
 - Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
 - Current data rotated to be alongshore and cross-shore
Flow-Shoreline Orientation Analysis

- Relationship of flow to shoreline orientation
 - Simple coast broken into ~10 km segments and orientation extracted
 - Weekly U, V 6-km current data extracted from 20-km wide bands at 10, 20, 50, and 100 km from shore
 - Current data rotated to be alongshore and cross-shore
Cross-shelf Transects (Alongshore Currents)
Cross-shelf Transects
(Cross-shore Currents)
1. Seasonal variability
 - Upwelling and relaxation signals very strong from Oregon to San Francisco Bay zone

2. Inter-annual variability
 - Ocean climate events suppressed the normal southerly flows in 2015-2016

3. Cross-shelf variability
 - Eddies and jets identifiable using the 20- and 50-km offshore regions
What’s Next

- Correlation Analysis
- Forcings Analysis
 (shoreline steering, meteorology)
- Anomalies Analysis

Inter-annual correlation of alongshore currents

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.27</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.27</td>
<td>0.25</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.27</td>
<td>0.25</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>0.13</td>
<td>0.08</td>
<td>0.22</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>0.19</td>
<td>0.14</td>
<td>0.10</td>
<td>0.18</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.12</td>
<td>0.13</td>
<td>0.22</td>
<td>0.11</td>
<td>0.22</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.17</td>
<td>0.15</td>
<td>0.19</td>
<td>0.16</td>
<td>0.20</td>
<td>0.17</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>0.18</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
<td>0.14</td>
<td>0.10</td>
<td>0.17</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>0.21</td>
<td>0.19</td>
<td>0.28</td>
<td>0.21</td>
<td>0.23</td>
<td>0.09</td>
<td>0.15</td>
<td>0.15</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
What’s Next

- Correlation Analysis
- Forcings Analysis (shoreline steering, meteorology)
- Anomalies Analysis
What’s Next

- Correlation Analysis
- Forcings Analysis (shoreline steering, meteorology)
- Anomalies Analysis

North-South Flows
Offshore (green), nearshore (blue)

- Cape Blanco
- Crescent City
- Trinidad Head
- Cape Mendocino
- Fort Bragg
- Pt. Arena

Diagram showing North-South flows with offshore (green) and nearshore (blue) lines for Cape Blanco, Crescent City, Trinidad Head, Cape Mendocino, Fort Bragg, and Pt. Arena from 2011 to 2017.
Thank you!

dgeorge@ucdavis.edu